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ABSTRACT

The analysis of stresses induced b, contact between two bodies is inherently difficult

because the size of the contact zone is unknown and constantly changing throughout

loading. To overcome these difficulties, two approximation methods have been devel-

oped to determine the magnitude of contact stresses using the Ravleigh-Ritz method and

the finite element method. Numerical optimization methods are employed to solve the
contact problem. The solution techniques are compared to known analytical solutions

and shown to yield accurate results. An application of this approach to solving the
contact problem is illustrated by examining the response of a clumped sandwich com-
posite beam to low velocity impact. It was found that the maximum shear stress is in-

sensitive to lamina thickness, however an increase in the contact layer thickness resulted

in a reduction in interfacial shear stress. In addition, it was noted that a nonlinear
bending stress distribution in the contact layer intensified as the thickness of this laver

increased. This phenomenon was found to be localized to the region of contact. Finally.

it was found that the compressive transverse normal stresses increased as the thickness

of the contact lamina increased.
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1. INTRODUCTION

A. MOTIVATION
Contact stresses occur when two bodies exert forces over limited contact regions.

Examples of contact stress include meshing gear teeth, cam shaft and pushrod contact.
rollers in plate forming operations, roller and ball bearings in contact with races, shaflt

and journal bearing contact, and plate-pin connections.

Contact zones can be point, line, or surface in geometry. Because of the limited
contact zone, the local stresses can be sufficiently high to be of major concern to the
designer. Consequently. a thorough understanding of this phenomenon is essential. The
first successful analytical solution to the contact problem between two spheres was
solved in the late 19th century by Hertz. His solution can only be applied to simple
geometries such as spheres. cylinders, and flat plates. Because of these limitations, al-
ternate solution techniques were needed to accommodate more complex geometries and

boundary conditions.

Unfortunately, the contact problem is difficult to study. The most significant diffi-
cultv is that the size of the contact zone is unknown and constantly changing throughout
loading. Solutions are obtained by an iterative process. Consequently. the problem is

hiehly nonlinear in its behavior. It is because of these difficulties that approximation
and numerical methods are preferred in the solution of the contact problem. There are
two general approaches used in the approximate techniques to solve the contact prob-
lem. One class applies specific iterative procedures to solve a nonlinear system of
equations that represent the contact state. For example, the contact condition can be
simulated by the introduction of additional coupling terms into the system of equations.
The other class constructs a functional that includes the contact body constraint. The

functional is then minimized using specific numerical programming techniques. Al-
though these two classes use different procedures, there are several methods to incor-
porate the contact condition into the problem formulation that are common to both
classes. Examples of these include the penalty method and the augmented Lagrange

multiplier method. These methods specify the manner in which the contact boundary

conditions are treated.

The objective of this study has two parts. First, two approximate solution tech-

niques will be developed to obtain the solution of the general contact problem. These



techniques belong to the general class of methods that calculate a specific functional and

then applies numerical programming methods to solve the contact problem. Second.

these solution techniques will be verified by comparison with known analytical solutions.

With the solution techniques verified, the methods will be applied to study an actual

contact problem.

In order to accomplish the first objective, two models will be developed. The first

method utilizes the Raxleigh-Ritz method to solve the contact problem. An assumed

deformation field that satisfies the boundary conditions is carefully selected. Theory of

elasticity relationships are applied to obtain an expression for the system's strain energy

enabling calculation of the total potential. The minimization of the total potential en-

ergy enables the calculation of the contact stresses at any point in the body. The second

model developed uses finite element analysis to accomplish the same objectives. The

numerical minimization technique used in both cases is the augmented Lagrange multi-

plier method.

To accomplish the second objective, both methods will be verified by comparison

with the tlertz solution of an infinitely long cylinder in contact with a flat plane. With

Serification completed. the contact stresses resulting from low velocity impact between

objects and composite sandwich materials will be studied.

B. LITERATURE SURVEY

As discussed previously, there are two general approaches to solving the contact

problem. One approach uses special procedures to solve a nonlinear system of

equations. The other creates a functional that includes the contact boundary con-

straints. Although different, both approaches use similar mathematical methods to in-

corporate the contact condition into the problem formulation. Two of these methods

are the Lagrange method and the penalty method. A detailed explanation of the method

of employing the Lagrange method in nonlinear finite element analysis was discussed by

Plan [Ref. 1]. Alternately, the penalty finite element method was used by Cheng [Ref.

2] to solve the multibody contact problem. The fundamental concept of the latter ap-

proach is the transformation of a constrained problem into an unconstrained one. This

is done by penalizing (i.e., increasing) the objective function for constraint violations.

Although both methods are effective, there is substantial discussion on the limitations

of both methods. Nour-Omid [Ref. 3] described the positive and negative aspects of

both methods. The Lagrange method has been shown to be the more accurate method.

I lowever, its usage requires the introduction of additional unknowns thus increasing the

2



system's degrees-of-freedom and computational time. The penalty method does not re-
quire additional computational time, but it has been shown to result in less accurate

solutions in satisfying the contact boundary conditions. Since the contact boundary

conditions are exactly satisfied only when the penalty term goes to infinity, the correct

choice of the penalty parameter is the key to an acceptable solution. Guerra [Ref. 4]

supported these claims.

Because of the limitations of the Lagrang-L and penalty methods. Bishoff [Ref. 5]

advocated the use of the augmented Lagrange multiplier method to solve finite element

contact problems. This method is favorable since it avoids the limitations of both

methods discussed above. The augmented Lagrange multiplier method is similar to the

penalty method in that the objective function is penalized for constraint violations.

However, an additional multiplier term is added so the optimum can be achieved by a

combination of both terms. As stated by Vanderplaats [Ref. 6: p. 141], the advantage

of this method is that the penalty term is not required to grow to infinity to achieve exact

constraint satisfaction.

The augmented Lagrange multiplier method can be used in numerical programming

techniques to find the optimum of any functional. Pierre and Lowe [Ref. -] provide a

detailed analysis of the programLing techniques necessary in applying this method.

Additionally, Vanderplaats [Ref. 6: pp. 140-147] provided an excellent discussion on the

practical usage of this method in numerical techniques. Rothert et al. [Ref. S] used a

numerical programming code based on this method to solve a nonlinear contact prob-

lem. In this study, an existing numerical optimization routine utilizing the augmented

Lagrange multiplier method will be used as an integral part of two solution methods

developed to solve the contact problem. These methods will use different techniques to

obtain the same functional. The augmented Lagrange multiplier method will then be

used in a similar fashion to solve each problem. In each case, the optimization routine

will be used to determine a set of design variables that describes the contact state.

Following the development and verification of the numerical procedures, this study

wifll investigate the response of composite sandwich materials to low velocity impact.

One of the common failure mode of low velocity impact is delamination. Joshi and Sun

[Ref. 9] studied the impact response of a three layer cross-ply graphite epoxy laminate.

A correlation was obtained between delamination cracks initiated experimentally and

maximum shear stress points determined numerically. Sun and Rechak [Ref. 10] Fol-

lowed up these findings and found that the introduction of adhesive layers between

laminae reduced the shcar stress distribution thus reducing delamination. Choi, Wang.



and Chang [Ref. 11] studied the effects of laminae orientation, ply thickness, and

stacking sequence on impact damage of graphite epoxy composites. It was determined

that stacking sequence affects impact damage more than laminae thickness variations.

Much of the previous work has focused on the behavior of the graphite epoxy laminate.

Hlowever, there is currently interest in the development of turbine blades constructed of

sandwich composites. It is therefore beneficial to investigate the response of composite

sandwich materials to low velocity impact.

4



i[. FORMULATION OF THE CONTACT PROBLEM

A. PRINCIPLE OF NIININMUNI TOTAL POTENTIAL ENERGY
As discussed in the introduction, the limited utility of the analytical solutions ne-

cessitated the development of solution techniques capable of handling the nonlinear be-

havior of the contact problem with complicated geometry and complex boundary

conditions. This study intends to develop two numerical procedures to solve the contact

problem. In short, the procedures will use different methods to obtain a functional, the

system's total potential energy, and then use similar methods to obtain the equilibrium

condition. Determination of the equilibrium position is made by application of the

principle of minimum potential energy. With equilibrium established. conta't stresses

can be quantified. In order to understand the details of this approach. the principle of

virtual work and the principle of minimum potential energy must be discussed.

Given a body in equilibrium, it is desired to describe the response of that body to

infinitesimal displacements resulting from a system of forces. If each particle in the body

is described by some generalized coordinates, then the work resulting from these

infinitesimal displacements is simply the product of the generalized forces acting on each

particle and the particle's displacement. However, if the particle is in equilibrium, the

work must be zero since the summation of forces in the x, y, and z directions is zero.

The infinitesimal displacements and work in this example are referred to as virtual in

nature. The fact that this work vanishes is referred to as the principle of virtual work.

The virtual work discussed thus far can be subcategorized as virtual strain energy

and virtual work done by external forces. From the definition of strain energy, virtual

strain energy, 6U, that results from virtual displacements can be calculated. Since this

energy is viewed as energy against the bonds between elements, 6LU is a negative quan-

tity. The work done by external forces is designated W W and is simply the summation

of the product of the external forces and the displacements of the generalized coordi-

nates.

Since the principle of virtual work states that the work done as a result of virtual

displacements is zero,

6 W - iU=0



Alternately, this can be expressed as,

1`l = j(LU- If- o

where II represents the system's total potential.

The above equation illustrates the condition of minimum total potential of a system.

This is the foundation of the principle of minimum potential energy. [Ref. 12: pp.

330-331] This principle states that in a condition of stable equilibrium, the systems

total potential is stationary. Hence. determination of a system's total potential energy

and the minimization of that quantity will enable the calculation of the equilibrium po-

sition. This is the basis for the numerical techniques developed in this study.

B. CONTACT PROBLEM DESCRIPTION

The objective of the solution techniques to be developed is to obtain a means of

calculating the total potential energy and minimize it to determine the equilibrium con-

dition. To accomplish this. two different models will be created to first solve a simple

isotropic case, the solution of which is known. In this manner, our models can be vali-

dated for use in more complicated arrangements.

Consider contact between a cylinder and an infinite plane as shown in Figure 1. A

cross section of the contact zone is shown in Figure 2. Let the width of the contact zone

equal a distance of 2a. An analytical solution of this problem is available as a result of

the work done by Hertz. In developing the solution methods, only a very limited region

adjacent to the contact zone will be examined. The reason for this is that the contact

phenomenon is a very local one. Figure 3 represents the analytical solution of the

normal stresses resulting from'this contact problem. [Ref. 13] As shown, the stresses

in the foundation diminish very rapidly. The diagram shows that a, becomes negligible

at depths less than one half-contact zone (a) and a, diminishes significantly in less than

3 half zones. Because of this, it is reasonable to assume that displacements beyond a

very limited region are negligible in the strain energy calculation of the contact problem.

A number of simplifying assumptions will be made for this stud,:

1. As discussed above, displacements beyond a limited region are negligible in strain
energy calculations.

2. The foundation is an elastic isotropic material. The cylinder (roller) is rigid.

6



Figure 1. Roller-foundation assembly

---0. 2a

x j

Figure 2. Contact zone cross section
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3. Deformations normal to the cross-section are negligible, hence a condition of plane

strain exists.

4. The roller is subjected to a vertical distributed load.

5. The roller-foundation contact is frictionless.

An important restriction on the minimization problem will be that one body will be

prohibited from penetrating into the other body. This may seem like an obvious re-

striction. howe%er a method of mathematically stating this restriction must be discussed.

Figure 4 shows the deformed and undeformed contact zone. Let 5 represent the de-

flection of the roller due to an external force and V(xjV) represent the vertical deflection

of the foundation at any point (xiv). At the point of Contact .\, the condition of no

interference can be expressed as.

v(0.0j _> ,3

At point B. this condition can be stated as.

v(r sin 0,0) >_ Li - r(l - cos 0)

The latter condition can be specified at as many points as necessary to define this re-

striction.

C. NUMERICAL OPTIMIZATION

1. Optimization Fundamentals

Before developing the models to be used in this study, one final area must be

discussed. Once the total potential energy has been calculated, a method of rninimizing

it to find the equilibrium position must be employed. A study of the numerical opti-

mization technique to be used is required.

The technique being used in this study relies heavily on the methods of design

optimization. Design optimization is the utilization of mathematical techniques to

minimize or maximize a particular value to obtain an optimum solution. The method

is ideally suited for design. A given design task may have an infinite number of sol-

utions. However, finding the best solution is a matter of the designer's experience and

intuition. In the absence of significant experience in a particular field, finding this sol-

ution may reduce to examining a range of possible solutions by trial and error. Opti-

mization routines can be utilized to find this solution mathematically.

Optimization problems can be constrained or unconstrained. For example, it

may be desired to determine the minimum of the parabola. F(x) = (x - 5)2 + 2. As seen

8
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in Figure 5, the minimum is clearly identified at point A. This is an example of an un-

constrained problem. A constrained counterpart of this problem is:

Nfinirruze: F(x)

Subject to: F(xi ,_ .5x + 4

As seen in Fieure 6, the minimum of the constrained problem is at point B. This is a

simple illustration of constrained minimization. The contact problem is a constrained

minimization problem.

/e
I

I

/ r
/

/

/

Figure 4. Deformed contact zone

The value to be minimized or maximized is referred to as the objective function.

The parameters to be determined are referred to as design variables. The optimization

process is an iterative one. The objective function is evaluated. The design variables

are varied thus obtaining a new objective function. If the difference is within a certain

tolerance or meets a certain convergence criteria, the optimum has been obtained. If it

is out of tolerance, the cycle repeats.

10
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2. Augmented Lagrange Multiplier Method
The contact problem belongs in the class of constrained problems. There are

several techniques of solving constrained problems. The technique used in this study

belongs to a class of solution techniques known as sequential unconstrained minimiza-

tion techniques (SL.MT). This class of techniques is designed for the general nonlinear

problem. The fundamental concept behind this approach is that a constrained problem

is transformed into an unconstrained problem and the objective function is minimized

using an unconstrained mininUzation technique. This transformation is accomplished

by assessing a penalty to the objective function for constraint violations. For example.

if the design variables are varied in such a way as to enter the region where a constraint

is violated (i.e.. the infeasible region), the objective function would be assessed a penalty

(i.e.. increased). Thus. in order to minimize the objective function, the design variables

remain within the region where no constraints are violated (i.e.. the feasible region).

[Ref. 6: pp. 121-123]

There are a number of methods within this class of techniques. They essentially

differ in the way in which penalties are assessed. The technique used in this study is the

augmented Lagrange multiplier (ALNX) method.

Given the constrained inequality optimization problem:

Minimize: F(X)

Subject to: g,(XAý < 0. i = 1.2 ..... n

The A.ugmented Lagrangian is defined as.

M

.4(X, ).,p) = F(X) + {'i.[giA) + s7] + p[giX) + -2

where.

X= vector containing the design variables

A. Lagrange multipliers

p =penalty parameter

s, =slack variables which convert inequality constraints to equality con-

straints

13



The first two terms of .1(X,,'.p) represent the Lagrangian. From the method of

Lagrange multipliers, it is known that minimization of the Lagrangian represents opti-

mality. Like simple problems where 0. is simply an additional unknown to obtain, in the

:\L N method /'. is unknown. I fence, a mathematical routine based on constraint values

is used to select and modify ZI for successive iterations. [Ref. 6: pp. 140-147] Initial

selection of this term can have a significant impact of the problem's convergence.

A\s discussed above, a penalty is assessed to the objective function for constraint

iolations. This feature is apparent by examining the last term. A constraint violation

results in a positive value for g-() thus resulting in an increase in .4. The value of p is

a scaling term which is sequentially increased throughout optimization. This ensures

that there is a balance between convergence and numerical conditioning. If p remains

small, convergence may occur with major constraint violations. If p remains large.

constraints will be satisfied at the expense of an ill-conditioned problem [Ref. T: p.

169]. As with the Lagrange term, selection of this term has a significant impact on the

outcome of the problem.

3. Optimizer and One-Dimensional Search

Thus Car. a procedure has been defined which has transformed a constrained

minimization problem into an unconstrained one. This level of the optimization process

is referred to as the optimization strategy. The formulation of the modified objective

function via the augmented Lagrange multiplier method represents a key portion of the

optimization process. However, there are additional parts of this process that require

comment.

With the modified objective function and a procedure for assessing penalties in

place, a procedure for minimizing the objective function must be defined. This portion

of the process is carried out by the 'optimizer.' The optimizer's function is to system-

atically alter the design variables in a manner that reduces the objective function rapidly.

If X represents a vector containing the design variables, the following process is used by

the optimizer to alter X

X~-)+ k1Sj

where,

i current iteration number

S S search vector

k - scalar representing distance traveled in direction S
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In general, two processes must be accomplished to find the optimum. First, the search

direction S must be determined by a systematic process. An example of this phase is the

steepest descent method where the direction of steepest gradient is chosen. Second, the
scalar k must be determined such that the objective function is minimized as much as

possible in the search direction of the current iteration. The latter phase is referred to

as one-dimensional search. [Ref 6: pp. 10-12]

The optimizer used in this study is the variable metric method. Due to the
complexity of this method, a discussion of their formulation is omitted. A\ detailed ac-

count is available in Vanderplaats [Ref 6: pp. 92-93]. The one-dimensional search
routine used in this study is the golden section method with polxnomial interpolation.

The one-dimensional search portion of the process merely represents a systematic and

efficient method of finding the ninimum in the chosen search direction..-\ detailed ac-

count of this approach is again available in Vanderplaats [Ref 6: pp. 26-49].

4. Convergence

The final point to be discussed relevant to optimization fundamentals is that of
convergence. Convergence criteria are utilized to identify the optimum solution and

terminate calculations. There are a number of convergence criteria that can be utilized.

The most obvious is absolute convergence where the objective functions from two suc-

cessive iterations are compared. If the difference between the values is within some

prescribed limit, optimization is terminated. A second method signi fing optimality for

unconstrained problems is calculation of the gradient with respect to the design variable

vector X. If this value is approximately zero, optimality has been achieved. This method

is called the Kuhn-Tucker conditions for unconstrained minimization. Kuhn-Tucker

conditions are more involved for constrained problems. [Ref. 6: pp. 100-101]

The Automated Design Synthesis (ADS) System used in this study uses both

these termination criteria as well as relative convergence. Relative convergence is similar

to absolute convergence except normalized versions of the difference between successive

iterations is calculated. Again, if a specified tolerance is achieved. optimization is ter-

minated.
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III. APPROXIMATE SOLUTION TECHNIQUES

A. RAYLEIGH-RITZ APPROACH

1. Background

The Rayleigh-Ritz method is a method of utilizing the theory of minimum po-

tential energy to solve a given problem. The fundamental concept behind this method
is that a trial function that represents the deformation field is chosen in terms of un-
known constants. Second. the system's total potcntial energy is calculated in terms of
the trial f-unction. Since the total potential is a minimum at equilibrium. minimization
enables determination of the unknown constants. The total potential is minimized by
differentiating with respect to the unknown constants and equating to zero. The result
is 'n' equations and 'n' unknowns, the trial function constants. [Ref. 12: pp. 335-336 ]

The only requirement of the Rayleigh-Ritz method is that the trial function is
kinematicallv admissible. A kinematically admissible solution is one that satisfies the
geometric boundary conditions of the system (i.e., deflection and slope). Other require-
ments need not be satisfied. As an example, consider a simply supported beam of length
L with the origin at the left end of the beam. A kinematicallv admissible solution to
describe the beam's one dimensional deformation from vertical loading in the v direction

is.

v(x) = a, sin( T )
L

where a, represents the coefficient to be determined.

Deflection boundary conditions at x = 0 and x = L have been satisfied. Obviously, an
increased number of terms in the trial function will yield a far more accurate solution.
A Fourier sine series would be a reasonable selection in this case.

Although the Rayleigh-Ritz method does not stipulate numerous requirements
on the trial function, sensible choices of trial functions will increase solution accuracy
significantlv. For example, consider the same simply supported beam with the origin

now at the center. A kinematicallv admissible function is,

.•'x ) = a , sin ( 2 ).
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Naturally however, due to the placement of the origin in this problem, an even function

is a much for sensible selection for a trial function. A more appropriate selection would

be,

v x) = ta, cos(-- t ).

rhe latter point concerning sensible selection of the trial function will be discussed in

detail throughout this study.

2. Application of the Rayleigh-Ritz Method to the Contact Problem.

A\ brief overview of the method to be developed is in order. Application of the

Rayleigh-Ritz method necessitates the selection of the appropriate trial function in terms

of' unknown coefficients. A discussion of the physical nature of this problem as well as

the desired features of the trial solution is required.

The theory of elasticity relationships will be applied using the trial function to

obtain the system's strain energy in terms of unknown coefficients. The system's total

potential energy will then be minimized utilizing the optimization techniques discussed

in Chapter II. The design variables are the unknown trial function coefficients. With

the coefficients determined, the displacement is known for all points enabling the stress

to be determined throughout the body. Figure 7 is a flow chart of the procedure to be

utilized. The post-processing procedure shown is simply the calculation of the stresses

using the now determined coefficients.

3. Trial Function Selection

In order to choose an appropriate trial function, it is necessarv to have an

understanding of the physical phenomena to be modeled. Consider the roller-foundation

system shown in Figure 1. Two trial functions are needed to model horizontal and ver-

tical deformation. There are a number of important characteristics that should be in-

herent within the trial functions. These are outlined below:

1. .As seen in Figure 3, o, and a. are equal and compressive at the point of contact.
Additionally, a, decays more rapidly than a. as distance from the contact point in-
creases.

2. Taking the origin at the point of contact as shown in Figure 2, the u-deformation
takes the form of an odd function.

3. The v-deformation takes the form of an even function (i.e. symmetric about the
origin and greatest at the origin).

4. To satisfy the Rayleigh-Ritz method requirements, the boundary conditions must
be satisfied. In this case, this requires u and v deformation to be zero at the far
boundaries.
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Figure 7. Rayleigh-Ritz method applied to contact problem
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5. The characteristics outlined in item 4 satisfy the requirements of this method.
However, since this study will be a stress analysis, it is also desired that the stresses
also reflect the physical phenomena. Since a. and ao are functions of E, and t,. c,
and -,, should also exhibit certain characteristics. Referring to Figure 8 for dimen-
sions and the coordinate system. it is desired that r, and c, equal zero at x = L 2 and

1= 1I. This will ensure that stresses are zero at the boundaries. To satisf% the re-
quirements of'item I above. E, and z, should be equal and negatie at the point of
contact and decrease in magnitude as the distance from the point of contact in-
creases.

X

Y tH

L

Figure 8. Contact zone

With the above guidelines in mind, the trial function can be selected. The trial

functions chosen for this study are composed of a series of terms of the general form:

u(xy,) = a,(H - v L b(

L 2 (3.2)

v(xy,) = bo(If - y)C( L -x)

These expressions were carefully chosen and represent a compromise due to the diffi-

culties of satisfying all boundary conditions with the physical phenomena of this prob-

lem.
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From the above expressions, it is immediately obvious that the geometric

boundary conditions at x= L 2 and N. I I have been satisfied. This satisfies the re-

quirements of the Ravleigh-Ritz method. In addition, there are a number of important

characteristics that illustrate the advantage of this selection:

1. t, and E. are negative thus simulating a compressive environment in the vicinity of
the point of contact. The importance of this is obvious. If normal strains were not
negative. the resulting requirement would be for the coefficient to be less than zero
to simulate compression. It is obvious that this would result in deformations op-
posite to that which was desired by the choice of the trial function.

2. This selection for deformation fields has the important characteristic of decreasing
deformation as we move away from the point of contact. Also note that defor-
mation is maximum at the point of contact.

3. The exponents a.b.c. and d can be varied to simulate subsurface stress fields. For
example, if the analytical solution indicates a large v gradient for ., at x = O. the
objective would be to increase the rate at which r, decreases as the distance from
the point of contact increases. This would be easily simulated by raising the value
of a. If this change had a detrimental effect on the behavior of ay, the exponentsof the vertical deformation could be varied to restore the solution.

It is important to note that this selection is not without compromise. The most

signilicant limitation of the trial functions is with regard to the horizontal deformation

u. Physically. it is expected the u(xy) behave as an odd function as discussed above.

However, in this selection of trial function, a positive value of uWxvy exists at the origin.

This is contrary to the physical behavior of the problem and will lead to some error.

However, considering that the magnitude of this deformation in the elastic range is

small, this error is believed to be limited. Another consequence of this compromise is

the existence of non-zero shear strain at x = 0.

Another less severe limitation is a restriction on the order of the exponents in

order to maintain zero stress at the boundaries. Since a, and a. are combinations of F,

and EY, both normal strains must be zero at the boundaries to ensure that stresses are

zero at these locations. Since the normal strains are first derivatives, this requires that

b and c are at least equal to 2.

It is worthwhile to note that most of the considerations discussed above far ex-

ceed the requirements stipulated by the Rayleigh-Ritz method. The objective has been

to utilize trial functions that closely match the physical nature of the problem in an ef-

fort to maximize accuracy.

The specific trial functions used in this study are listed below. The horizontal

deformation was assumed to be;
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u(xXy) = 3a.(Il )(i+P)( L3 .3
n=l

where II and L represent the height and length of the bearing foundation, respectively.

Summation was done for n equal I and 4. The vertical deformation was assumed to be,

\ix~y) = b tt 3 - -- x( . ( n •(134 )

..As discussed previously, manipulation of the exponents enables the trial function results

to be matched with the analytical solution. As will be illustrated in the results. the ex-

ponents chosen in the above functions achieve this goal sufficiently.

With the deformations chosen, the stresses and strains can be calculated for use

in the calculation of the foundation strain energy. These values are shown below:

'Pt

= 7 - +)( ., - x) (3.5)
n=1

Ey = 2b,(H - y)( + 3xOn -36)

ax- L (+n)J (3.7a)

= (I + V)(l I 2v) [I-'f~+~](.a
E

eix =(I + v)(l -- 2v) [(1 -- v)tx +vcv] (3.7b)

ay- E _[(I - v)E y +VC1] (7b)
a=(I + v)(l-2v)

where E and v are Young's modulus and Poisson's ratio, respectively. For the shear

stress and strain,

- (4 + L, _ ,,,, + n)-t - 2 (3 .S )

Ov - x)n 39

-•-x= (1+n)b'7(n-y)2('•x
i=1
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+. (3.10)
XY CJ CX

. = G (3.11)

where G is the shear modulus.

Using the above quantities, the strain energv U can be calculated. From the definition

of strain energy applied to a two dimension deformation field.

_; I ~ j'4 (aC'E + a.-4- (~~dd 3-121
1 0)

Because of synmictr' about the origin, strain energy can be calculated for half of the

domain and doubled. With strain ener2y calculated, the total potential for the system

can be found from.

fl = U'- 1( (3.13)

where.

F= external force per unit length applied to the roller

S= vertical distance traveled by the roller.

The quantity F6 represents the work done by the roller on the bearing foundation.

B. FINITE ELEMENT APPROACH

1. Total Potential Derivation

The finite element method can be employed to solve the contact problem. A

finite element mesh can be constructed to approximate the behavior of an elastic fbun-

dation subjected to line contact loading from an rigid roller. The resultant interaction

between the foundation and roller enables the calculation of the foundation's strain en-

ergy and the subsequent calculation of the total potential energy. By again utilizing the

optimization techniques discussed in Chapter I1, the equilibrium position can be deter-

mined. Thus the contact stresses can be calculated throughout the body.

The objective is to derive a means of calculating the total potential of the system

by application of the finite element technique. Total potential energy is defined as.
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1` =- U- F65 (3.14)

where,

U =- internal strain energy

F=- external force per unit length applied to the roller

j = vertical distance traveled by the roller.

The strain energy of the system can be found from.

U f= 4• (ao + aEy + r(j;jdQ 3.151

where QŽ represents the problem domain. This can be expressed in matrix form as.

u= f"I (3.16)

where,

Sr=

{a)r= tax ay •.,y

On the element level.

U= (E {}rodj2 (3.17)

where i represents analysis of the i'* element.

The stress matrix can be expressed as.

(a) = C D]{• .8

where [D] represents the material property matrix.
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Ior a condition of plane strain, the stiffness matrix can be expressed as,

] - v v 0 ]
(1> A [ii 2 V -vl- 0 t-3.I~al
(I + I - 20

2

For a pl1ne stress condition.

[D]= EI: , •.

The development of this technique will use linear triangular elements. The method.

however, can be applied to any type element. For linear triangular element, the defor-

mations take the following form:

u = H- i + Hiu 2 + H3u3  3..0)

v = H1vI + H~v2 + H3v 3  (3.21)

where the shape functions H, are defined as:

Ill = (x.V3 - x3Y2) + (,2 -Y 3)x + (X3 - x()] - (3.22).4,
112 = [(x 3Y1 - xLY3) + (Y3 - Y)x + (xI - X3)Y' 2 -3.23)

113 = [(xWV- x 2Y) + (V1 - y)x + (x2 - xOAv] 2-..241

where,

x,y, = coordinates for node i

.4 = element area [Ref. 14].

The strain matrix can be expressed as,
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CX

{c}= 0 -0-- {3.2-5
CC

Cj' er

Substituting equations (3.20) and (3.21) into equation (3.25) yields,

cI~ H !, ýtt 3 U-2
0 _ 0 0

CV C CV Y

For the linear triangular element. [B] reduces to,

Y2- Y3 ) Y 1  0 Y Y

[B] = 0 0 -- X 2  0 X 1--- X 3 -- " X3.2s)

X3 - X Y2 X1 - X3 Y; Y1 - Xi Yi Y-]

Returning to the element strain energy calculation, equation (3.17),

U Io
U=j ,l{•}r{l}

and substituting (3.18) into (3.17),

S i {:}T[D]{eIdV. (3.29)
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Substituting equation (3.27) yields,

U f= -L- ([B]{,/ )T [D][B]ý.ddV

1 r[B]r[D][B]{,aj ,V
S=T ,T T

L {d} T[B]T[ D][ B]4,{d} i 3. 30)

where t = unit depth. Defining the element stiffness matrix [K]

[K] = [B]T[D][B].Ht (3.31)

then the strain energy per element equals.

L = A ] {,}h-]{,) (3.32)

The element stiffness matrix can be expanded into the global stiffness matrix.

With strain energy now determined, total potential can be determined from equation

(3.14).

2. Optimization and Static Condensation

As with the previously developed model, the augmented Lagrange multiplier

method will be utilized to determine the equilibrium condition via the theorem of mini-

mum potential. The objective function is again the total potential. In this case, how-

ever, the design variables are the nodal deformations, u, and v,. for non-fixed nodes.

Constraint equations are develbped in a similar manner as discussed in Chapter I! to

ensure that one body does not violate space occupied by the other.

Since the nodal deformations are represented as the optimization design vari-

ables, the number of design variables will equal twice the number of non-fixed nodes.

For a simple mesh, a direct application of this procedure will likely yield accurate results.

Hlowever, it is known that the accuracy of the optimization routine declines as the

number of design variables increases. Hence, for complicated finite element meshes,

solution accuracy will be adversely affected by the large number of design variables.

Therefore a procedure must be adopted to eliminate the need for assigning design vari-
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ables to nodes where information is not necessary for evaluating a solution. This pro-

cedure is known as static condensation.

Static condensation has been utilized by References 2 and 3 in an effort to re-

duce computer computational time. The idea behind static condensation is the reor-

gani/ation of the global stiffness matrix. A finite element problem can be expressed as,

where.

[K,] = the stiffness matrix

the deformation vector

[/3 = the force vector

It is desired to reorganize this system ofequations into the following:

K,[ j:,,, = {F} (3.32 1

The vector u, contains the essential nodes while vector u, contains non-essential nodes.

Essential nodes are those where boundary conditions are applied and nodes that are as-

signed optimization design variables. By matrix manipulation.

{u2} = - [K~z]- [K,1 ]{u1 . (3.35N

Therefore, the displacement vector can be expressed as,

11S {ui} * = [1 F1 ( 3.360)

" 2  =[K22 [K2 I - [K 22]-[K2 1]

where I represents the identity matrix.

Substituting this equation into the global counterpart of equation k3.32).

f-= +[K 22 [K 21  [ [k 2X[K-,1]J

By defining the reduced stiffness matrix [A], the above reduces to.
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S=4{uj tu [A']{ (3.3S)

As discussed at the beginning of' this section, the ADS design variables are as-

signed as the horizontal and vertical deformations at all non-fixed nodes. With the in-

tegration of static condensation, design variable assignments are further restricted to

non-fixed. non-condensed nodes. The procedure is now in place for calculation of strain

energy and total potential energy. In surmmar-, a flow chart of' the solution procedure

utilized in this chapter is shown in Figure 9.
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Figure 9. Finite element method applied to contact problem
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IV. RESULTS AND DISCUSSION

A. PROCEDURE VALIDATIONS

1. Rayleigh-Ritz Method Results

In Chapter III an approximation technique was developed to solve the contact

problem via the Rayleigh-Ritz method. As discussed, two trial functions that approxi-

mated the deformation field were selected in terms of unknown coefficients. The hori-

zontal deformation was assumed to be:

'72

u•.r~v) = /, 1,( H! -v'J "C -'5" - .)

The vertical deformation was assumed to be;

Li t~y) = Y b,,,(II - ,)2( " 1---

Using the above deformation fields, theory of elasticity relationships and the definition

of strain energy were employed to obtain an expression for the total potential energy of

the system shown in Figure 1. Numerical minimization techniques were then employed

to determine the equilibrium condition and the contact stresses.

To illustrate the application of this method, an isotropic material with the fol-

lowing properties was selected:

E = 200 GPa

v =0.3

G = 76.9 GPa

As stated in Chapter II, this problem was selected for development of this technique

because an analytical solution is available as a result of the work done be Hlertz. It is

desired to use this analytical solution to choose a roller size, load, and problem domain

that can be used to accurately simulates the contact phenomenon.

Contact stresses as well as the size of the surrounding region of influence are

strongly affected by the size of the contact zone. Naturally, as the size of the contact
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zone increases, the load is distributed over a larger area and contact stresses decrease.

The extent of the affected subsurface zone also decreases. From the analktical solution.

the contact zone size is defined by the externally applied force, the material properties

and the diameter of the roller [ Ref. 13 ]. I lence for a given material, the roller size and

the external load define the contact zone size and the resulting stresses.

Figure 2 defined the width of the contact zone as 2a. Figure 3 shows the ana-

lytical solution of the contact problem. This figure shows the decrease of the normal

stresses as a function of half-contact zones (a) awa,, from the contact point. As shown.

ra decreases more gradually than a, . Therefore the decay of a, is the limiting factor in

defining the domain beyond which strain energy contributions are negligible. From

Figure 3, it is estimated that the contact phenomenon can be accurately modeled by
examining a region equal to approximately five half-zones (5a).

Since a numerical integration technique was used to perform the double inte-

gration required by Equation 3.12. the dimensions were selected for numerical conven-

ience. Referring to Figure S, height If and length L were selected as I and 2 meters.

respectively. Due to the problem's symmetry, half the foundation was analyzed. This
enabled the double integration to be conducted between the limits of') and 1. Since the

foundation hei,,ht t If has been set to I in, it is desired to have this distance equal to 5

contact zones (5a) as described above.

t:Usine the analytical solution. a load and roller diameter were selected that cre-

ated a contact zone such that the foundation height If was equal to a distance of 5a.
[he only additional restriction was that the resulting contact stresses remained within

the elastic range of the material. Yield stress was assumed to be 300 l IPa. The load

and roller radius combination used in this study are;

Load: 90 MN

Radius: 75 m

The values were obtained using the analytical solutions found in Reference 13. lhe
latter dimension is unrealistic. However. as stated above, it is a result of the selection

of base dimensions in the interest of numerical convenience. This model simply repres-

ents a scaled-up examination of the base material in a small region adjacent to the con-

tact zone.

Comparisons of the approximated contact stresses with the analytical solution

along the axis of s-ymmetr" are shown in Figures 10 and II. Both figures are normalized
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graphs of the stress distribution. As shown in Figure 3, the maximum stress occurs at

the point ofcontact. As shown, this stress is equal to a, and a, at the point of contact.

Figure 10 is a comparison for a, . This figure shows a stress distribution that closely

approximates the analytical solution. Figure I I shows the analytical and approximate

stress distribution for a,. It is apparent that this method over approximates this stress.

.\s stated in Chapter 11, one ofthe benefits of this trial function is the ability to change

the exponents to match analytical solutions with approximate solutions. A brief expla-

nation of the choice of exponents used in this solution technique follows.

While selecting exponents. it must be understood that a, and a are both func-

tions of horizontal and vertical deformations. Therefore changing the exponent of one

deformation to alter the stress in one direction will influence the behaior of the other.

In the case of Figure 11, it appears that a modification is required. An increase in the

exponent of the v.-portion of the horizontal deformation function seems appropriate to

increase the rate at which a, decays. Hlowever. this action will have the undesirable ef-

fect of decreasing the rate of decay of ,t. It is possible to counter by decreasing the

exponents of the vertical deformation. However, as stated in Chapter I[I. in order to

maintain a zero stress boundary condition at x= L 2 and v= II the exponents of all

terms must be greater than or equal to 2. Thus a compromise must be reached. It is

believed that since a, is the dominant term. priority should be placed on ensuring a, is

as close as possible to the analytical solution. Accordingly, a decision was made to ac-

cept the over estimation of a, as shown in Figure 11. In this case. the estimation of a,

is conservative.

The contours of the Rayleigh-Ritz solution are shown in Figures 12 through 15.

It has been determined that this method can accurately predict contact stresses resulting

from line contact between a roller and flat plane. Table I compares the approximated

contact stresses and the analytical results at the point of contact.

Table 1. RAYLEIGH-RITZ RESULTS AT CONTACT POINT

Current Model Analytical Solution

a, (MPa) 285.6 289.7

ny, (MPa) 301.9 2S9.7
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Figure 12. Stress contour of a. from Rayleigh-Ritz method

2. Finite Element Method Results

In Chapter Ill, an approximation method was developed to solve the contact

problem using the finite element method. A method of calculating a system's strain en-

ergy and the total potential energy was investigated. In addition, the use of static

condensation to improve optimization efficiency was described. As discussed, the nu-

merical minimization techniques were again utilized to determine the equilibrium posi-

tion. A means of employing these techniques to evaluate the contact phenomenon was

introduced. In this section, a simple contact problem will be investigated to validate the

algorithms used to calculate strain energy and those used to implement static

condensation. With confidence in these algorithms, the more complex roller-foundation

problem will be examined.

a. Two Thin Plates in Contact

The procedure developed was first validated on a simple contact problem

the solution of which was known. In this example, two thin bodies in plane stress were
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studied. As shown in Figure 16, one body, restrained on one edge and subjected to a

horizontal load, comes in contact with a second body rigidly supported on three sides.

The finite element model developed to solve this problem is composed of 14 linear tri-

angular elements as shown in Figure 17. The objective of the fortran program developed

to solve this problem was to calculate the total potential energy of the system using the

finite element technique and thb method of static condensation. With this accomplished.

the equilibrium position can then be found via the augmented Lagrange multiplier

method.

The objective function for this problem is the total potential energy,

Equation 3.14. Referring to Figure 16 and 17 the constraints imposed on the system are

expressed as:

u8 < 0.005 + u,1
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it, _<ý 0.00 + U1 2

where it represents the horizontal deformation of node i.

As shown in Figure 17, seventeen nodes were used to model the s\stem.

Each node has been assigned horizontal and vertical deformation variables. Ac~cord-

ingly, the degree of freedom for this system is twice the number of nodes. As discussed

in Chapter Ill,. static condensation requires the identification of essential nodes and

non-essential nodes. Essential nodes are those nodes where ADS design variables are

assigned and boundar" conditions are applied. Referring to Figure 1'. node 3) is the

point of load application and must be assigned a design variable..Nodes 8. 1). 11l. and

12 are assigned design variables in order to define the constraint equations described

abo~e. After eliminating all fi.xed nodes from consideration, nodes 2. -5. and 6 are the

only- candidates for condensation. As discussed in Chapter I!I1, the global stiffness nia-
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trix is rearranged according to Equation 3.34. For this problem. the vector containing

the non-essential nodal information, u%, is arranged as follows:

T
{u 2} = u 2 ½2 U5 V5 i, O6}

where u and v, represent the horizontal and vertical deformation of node i. respectively.

Strain energy and total potential energy were calculated according to Equations 3.38 and

3.14. The latter was minimized using the augmented Lagrange multiplier method de-

scribed in Chapter II.

The solution obtained from this simple problem were compared with the

results obtained from Y.W. Kwon and J.E. Akin [ Ref. 15 ] and are shown in Table 2.

The solutions were in agreement. It was concluded that a satisfactory procedure was in

place to solve the more complex roller-foundation problem.
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Table 2. FINITE ELEMENT RESULTS: TWO PLATES IN CONTACT
Load (N) Deformation Current Model Reference 15

LO O1 (9 No Contact No Contact
LOX 106 ~ 14 .503x10-2  .503)x10 2-

U12  .336xl104  .319l9,dO4

L.OXlO 9 .70.'x10-2  .734xl102

2

U12  .201x10- .235xl10 2

b. Roller-Foundation Contact Problem

A finite element grid composed of 512 linear triangular elements was con-

structed to model the roller-foundation assembly shown in Figure 1. Because of the

symme try of the problcm, one-half of the foundation was modeled. A refined mesh was

constructcd in the vicinity of the point of contact. The mesh is shown in Figure 18

where the origin represents the point of contact. The domain dimensions are similar to
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those chosen in the Rayleigh-Ritz method discussed in Part A of this chapter. The roller

radius was chosen as 75 meters and the half-domain dimensions are 1.40 x 1.40 meters.

As discussed in Part A, these dimensions represent an analysis of the region immediately

adjacent to the contact zone and are a result of the local nature of the contact problem.

Constraint equations were constructed according to the discussion of

Chapter II Part B. Boundary conditions were imposed in the following manner:

"* Horizontal and vertical deformations were prohibited on the remote mesh bound-
aries (i.e., u(I.40,y) = v(l.40,y) = 0 and u(x,l.40) = t•x,l.40) = 0).

"* Horizontal deformation was prohibited on the axis of symmetry (i.e., u(0,y) = 0).
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Since the system has 289 nodes, the resulting 578 degrees of freedom ne-

cessitated the utilization of static condensation. Referring to the contact surface, the

deformation variables that correspond to nodes on this surface are required for con-

straint equations. The nodes that comprise the other three borders of the domain are

all subject to boundary conditions. Consequently. the interior nodes of the mesh are the

nodes that are candidates for static condensation. In this model, all interior nodes were

condensed. The original system was reduced from 57S to 12S degrees of freedom. After

application of the boundary conditions, there were 46 possible deformations, a suffi-

ciently small number of design variables for the optimization algorithm. One additional

design variable was used to represent the distance of travel by the roller. This value is

needed to calculate the work done by the roller on the bearing foundation.

As before, Equation 3.38 was used to calculate the systems strain energy.

Following calculation and the subsequent minimization of the total potential energy, a

post-processing procedure was followed to determine the contact stresses. The output

of the optimization routine represents the nonzero components of the 1u,} vector. In

order to calculate stresses throughout the body, the remaining deformations contained

within the condensed vector (u,} must be determined. This vector is calculated directly

using Equation 3.35. With deformations known throughout the domain, strains can be

determined by applying Equation 3.27 to each element. The subsequent application of

Equation 3.18 enables determination of stress for each element.

To illustrate the capability of this method, an isotropic material with the

following properties was chosen:

E 240 GPa

v 0.3

G = 92.3 GPa

Load = 90.0 MPa

Figure 19 shows the deformation resulting from the loading. For clarity, the defor-

mations have been magnified 100 times their original values. Comparisons of the stress

distributions with the analytical solution along the axis of symmetry are shown in Fig-

ures 20 and 21. These figures are similar to Figures 10 and I I and represent normalized

versions of contact stresses. As shown in these figures, this method is a good approxi-

mation of the stress distribution in the foundation of a loaded roller bearing. If the mesh
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was more refined near the contact zone and the domain extended further, the agreement

between the numerical and analytical solutions would be better. Figures 22 and 23 rep-

resent normal stress contours of this problem. Figures 2-1 and 25 show normal strains.

Tablc 3 shows a comparison of the results of this model and the analytical solution at

a selected element in the region of contact.

Table 3. COMPARISON OF STRESSES NEAR THE POINT OF CONTACT
FEM Solution Analvtical Sol-

ution

(% MPa) at x=0.0137. v=0.0273 221.3 72.)

, (.Pa) at x= 0.0137. v= 0.0273 315.7 31S.S

B. APPLICATION

The preceding section illustrated that the contact problem can be accurately simu-

lated using the methods developed in Chapter II1. It is the objective of this section to

show how this approach can be applied to a contact problem in a composite plate sub-

jected to low-velocity impact.

A multi-ply laminate model has been constructed to investigate the response of

composite materials to low velocity impact. It has been found that composite bodies

subject to impact damage commonly fail due to delamination. Sandwich composites are

currently being considered for use as turbine blades. It would be beneficial to acquire

an understanding of the behavior of sandwich materials to impact damage.

In order to accomplish this task, a clamped composite beam similar to the one de-

picted in Figure 26 has been modeled. The beam length is 25 cm. Beam thickness is 2.5

cm. Because of symmetry, half the beam was modeled with 256 bilinear elements. As

shown in Figure 27, the mesh is refined near the point of contact, the origin of the mesh.

The major assumptions of this model are that the beam is in a condition of plane

strain and that the dynamic effect of the impact can be neglected. Reference 1) ap-

proximated the loading resu!ting from low velocity impact as a sinusoid. In this study.

the peak load will be examined to study the maximum normal and shear stresses. Ac-

cordingly, the stress distributions obtained from this study will represent a 'snap-shot

in time of the response of the body at the instant of maximum loading.

The finite element program developed to solve this problem is sufficientlv flexible to

alter the material stiffness matrix [D] shown in Equation 3.18 during construction ofthe
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Figure 26. Clamped composite beam
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Figure 27. Finite element mesh for clamped beam model

finite element global stiffness matrix. Therefore by defining the layup for the laminate.

the lamnina stiffness matrices can be varied from element to element to accurately model

the behavior of the body. This enables a variety of laminate layups and lamina thick-

nesses to be studied.

The sandwich materials used in this study are composed of an isotropic interior

material and orthotropic exterior laminae. Since a condition of plane strain was as-

sumed, the isotropic material stiffness matrix is given by Equation 3.19a. For the

orthotropic exterior laminae, the material stiffness matrix is given by Equation 4.1

[Ref. 16].

52



I- '2 3 V3 2  V•Z + V32VI3

LE2LT E1-32 r

[D] + V-I4.- 3  I -- v: 3 t'.
[D]= EE 3 r E:E3 T

0 0 G2

where.

r E1E,&E,

E = Young's Modulus in I" direction

v = Poisson's ratio for lateral contraction in j-" direction resulting from loading in

the i:' direction

The derivation of the total potential energy calculation in Chapter Il1, Part B was

done using linear triangular elements. Since bilinear elements were used in this model.

calculation of the element stiffness matrix was more computationally intensive. Indi-

vidual entries of the element stiffness matrix were obtained from Reference 17. Other-

wise. the calculation of total potential energy was identical to the procedure outlined in

Chapter I 1I.

There were two groups of boundary conditions applied to the problem. Along the

clamped edge, deformation was prohibited. In addition, horizontal deformation was

prohibited along the axis of symmetry. As before, the application of static condensation

requires the identification of essential nodes the information of which is contained within

the ju,} vector. In addition to the essential nodes associated with the above boundary

conditions, the nodes along the contact surface are needed for the constraint equations.

All other nodes were condensed out.

To illustrate this application of problem solving, sandwich material with the fol-

lowing properties were studied:

Exterior Laminae

E., = 170 GPa

E2 = 11.8 GPa

G, = 5.2 GPa

v12 = 0.33
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Isotropic Core

E= 2.2.4 GPa

G = 0.84 GPa

v = 0.35

The beam was loaded b" contact with a 10 cm radius ball. The transmitted force

was 250 N. Some unexpected trends were observed in the equilibrium position deter-

mined by the optimizer. By examining the deformations along the axis of symmetr., a

gradually decreasing trend in deformation moving away from the point of contact was
interrupted in lamina of significantly decreased stiffness. It is believed that this difficulty

resulted from an inability of the optimization routine to approximate defbrmations

through regions containing very different orders of strain energy. In spite of these dif-

ficulties. some critical information was obtained from this program. As discussed in the

beginning of this study, one of the greatest difficulties of the contact problem is the de-

termination of the size of the contact zone. Fortunately, the size of the contact zone can

be readily determined by examining the output from the constraint equations. By com-

paring the ball radius (r) and the distance between the ball center and the node (r'), it

can be determined if a node is in contact. This condition is illustrated in Fi2ure 28. The

distance r' to the it,, node is given by the equation:
r' = , (r - 6 + v.)2 + Xi-

If r' is greater than r, the node is not in contact with the body.

With the extent of the contact zone known, the solution to this problem was ob-

tained by applying the contact boundary condition to a direct finite element program.

Since the validity of the optimization program was in question. this method was applied

using a 0-90-0 layup similar to one used in a study conducted by Sun and Rechak [Ref.

10]. The solution obtained from the current approach was very close to the other re-

sults.

With confidence in the procedure, it was desired to examine the behavior of this

model to various layups. The objective was to illustrate how this solution technique can

be used for meaningful research. The study conducted by Sun and Rechak analyzed

methods of reducing the likelihood of composite failure due to delamination. Of par-

ticular concern is the magnitude of shear stress distribution and tensile stress in the v-

direction, the two predominant causes of delamination failure. Using materials with the
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properties outlined above, a sandwich composite beam with outer fibers aligned to 0

degrees was first studied. Since the finite element model is composed of 16 layers, the

beams studied will be described with the number of finite element layers in parenthesis

following the laver description. For example, a 0(3)-ISO(10)-0(3) beam is composed of

10 isotropic core la'ers within 3 layers of material with the fibers oriented at 0 degrees

on the top and bottom of the beam.

Three symmetric layups of varying core thickness were initialhy studied. The beams

have the following designations: 0(3)-ISO(10)-0(3), 0(4)-lSO(8)-04,), and

0(5)-ISO(6)-0(5). Figure 29 shows the deformed 0(3)-ISO(10)-0(3) beam with defor-

mations magnified 100 times. Stress contours for this beam are shown in Figures 30,

31, and 32. Figure 30 shows the shear stress contour for the loaded condition. This

stress is of particular concern since delamination, a common failure mode for compos-

ites, is commonly initiated by high shear stresses or tensile transverse normal stresses.

As the figure shows, a very high stress gradient is present near the contact zone. As the

distance along the beam increases away from the contact zone, the magnitude of the

gradient decreases until the cross sectional shear stress distribution becomes parabolic.

The transverse normal stress is also concentrated around the contact zone.

Figures 33, 34, and 35 show the cross sectional shear stress distributions for the

three symmetric beams described above. Three separate cross sections are shown on
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each graph. the locations of which are indicated in Figure 27. The vertical dashed lines

on each graph identify the lamina interfaces. These figures show that all significant ac-

tivity is confined to the lamina closest to the contact zone. It is also evident that the

maximum shear stress is relatively insensitive to the core thickness. However. as the

thickness of the layer closest to the contact surface increases, the shear stress transition

is more gradual at the interfatf with the core. The result is a reduction in the shear

stress at the interface for layups with thicker exterior lamina. It is also noteworthy that

the maximum shear stress occurs at cross section B vice cross section A.

Figures 36, 37, and 38 are graphs for the transverse normal stress, a , for the same

three symmetric layups. These graphs show an increase in or, as the thickness of the

exterior layers increases. The increased thickness of these layers produces a stronger

beam, hence beam deflection and contact zone size are reduced. Accordingly. contact

stresses increase. At cross section C, some tensile transverse stress is evident. As pre-

viously stated, tensile transverse stress is a potential source of delamination. A\s the

56



I.-.

Z
8

SHEFIR STRESS

S-0.I1 002 "

0•.0 2.5 5'.0 7.5 10.0 12.5

HORIZONTAL OISTRWCE FROM POINT OF MNTFCT

Figure 30. Stress contour: r, for clamped beam model

thickness of the exterior layer increases, the maximum value of this stress increases.

I lowever, this stress is always compressive at the interface with the core. By comparing

the magnitudes of the shear and transverse normal stresses at the interface, it would

appear that if delamination was to occur at this interface, it is more likely to be caused

by high shear stresses.

Comparisons of the bending stresses at cross section A are shown in Figures 39, 4).

and 41. These figures show that as the thickness of the exterior layer increases, a non-

linear stress distribution intensifies in the layer closest to the contact surface. This trend

would indicate that beam theory is unsuitable for estimating bending stress through this

lamina. This nonlinear behavior is local to the contact zone. Figure 42 shows the

counterpart for Figure 41 at cross section C. The stress distribution in the contact layer

is approximately linear. Another significant observation can be made by examining the

bending stress graphs. As the thickness of the exterior layer opposite to the contact

layer increases, the stress distribution within this layer transforms from purely tensile
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behavior to compressive-tensile behavior. This is significant because a bending crack

initiated by tensile stresses tends to propagate to the core interface and cause delami-

nation. The presence of compressive stress within this layer will tend to slow the growth

of this crack toward the core.

Thus far symmetric layups have been studied. To analyze how beams with asym-

metric layups respond to contact loading, two beams with the following designations

were studied: 0(3)-ISO(6)-0(7) and 0(8)-1SO(6)-0(2). The first designated layer is the

lamina closest to the contact surface. Figures 43 and 44 show the shear stress distrib-

utions for these two layups. As before, the maximum shear stress is relatively unaffected

by the different layups. As was the case for the symmetric beams, a thicker exterior layer

close to the contact zone results in a more gradual transition of shear stress into the

core. The result is a lower shear stress at the interface for the 0(8)-!SO(6)-( 2) case.

As seen in Figures 45 and 46. the trends for the transverse normal stress. (7, were the

same as those found in the symmetric beams. Deflection was less for the
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Figure 32. Stress contour: ay for clamped beam model (in region of contact)

1.08)- 1 SOl 6)-0-(2) case. The resulting smaller contact zone lead to higher contact stresses.

Aks seen in the s-,nimetric cases, an increase in the thickness of the laver closest to the

contact zone resulted in an increase in the magnitude of the maximum tensile transverse

stress. seen at cross section C. However, the stress at the lamninate interface was ahwavs

compressive.

With regard to bending stresses for these layups, Figures -47 and 48 clearly show the

nonlinear behavior as the contact laver thickness increases. In addition, the thickness

of the exterior laver opposite to the contact surface shows similar results as the sxm-

metric cases. As the thickness of this laver decreases, the beam is more susceptible to a

bending crack that propagates into the interface.
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V. CONCLUSIONS AND RECOMMENDATIONS

This study has developed two methods for approximating contact stresses using the

au mented Lagrange multiplier method. As illustrated in Part A of Chapter IV, these

methods accurately approximate the stresses that result from contact between a cylinder

and plane surface. This study has also illustrated how this approach can be applied to

understand the behavior of an actual contact problem by examining the response of a

composite plate to low velocity impact.

A. RAYLEIGH-RITZ APPROACH
In the process of developing these methods, a number of comments can be made

regarding the application of the Rayleigh-Ritz method to solving contact stress prob-

lems.

1. The selection of the trial function is an extremely challenging process. If it is de-
sired to determine the deformation in a contact problem, the proper stress field
must be first satisfied. Because of this. the selection of possible trial functions is
limited. For example. when selecting a trial function for the vertical deformation
of the foundation of Figure 1. a suitable selection is given by the following
equation:

.(Xy) =flx) Cos ( 21)y

This equation exhibits the favorable characteristics of maximum deformation at the
contact surface and diminishing deformation as the distance from the contact sur-
f'ace increases. If contact stresses are to be modeled, this trial function is inappro-
priate. Calculation of t, is as follows:

.y = -flix) 4 sin(a)

This function exhibits zero strain at the point of contact increasing to maximum
strain at the lower boundary.

2. Since the selection of trial functions is difficult, the task is further impeded by
complicated geometries. Furthermore, selection of a trial function necessitates that
some knowledge of the deformation field exists. Without a sensible selection of
trial functions, an accurate approximation is unlikely.

3. This method assumes the trial function in the form of an infinite series. Solution
accuracy theoretically should improve with an increased number of terms. [low-
ever, precautions must be taken to ensure the solution is numerically stable as the
number of terms increases. Since the strain energy calculations require integration.
there are choices of trial functions that will increase without bound as the number
of terms is increased. This problem can be controlled by normalizing dimensions
or limiting the choice of trial functions.

76



4. An increase in accuracy was observed as the number of constraints was increased
and the distance between consecutive constraints was decreased. It is believed that
the improved accuracy results from a better definition of the contact surface.

B. FINITE ELEMENT APPROACH

The results in Chapter III illustrated that this approach of applying the finite ele-

ment method to contact stress analysis is effective. A number of comments can be made

regarding this approach to problem solving.

I. As illustrated in the results, this method accurately approximated the isotropic
roller bearing problem. However, some difficulties were encountered during the
modeling of the multi-ply composite. In this model, smooth trends of decreasing
deformations were often interrupted by spurious deformations or groups of detor-
mations. These interruptions occurred within layers of significantlv reduced
stiffness. It is believed that the optimization routine had difficultv approximating
the deformations through these layers because of their very small contribution to
strain energy. As stated in the results, the contact boundary conditions were ob-
tained from the optimization program and applied to a direct finite element pro-
gram to solve the problem. The above difficulty is recognized as a limitation ofthis
approach.

2. This approach is much more flexible for complicated geometries than the
Rayleigh-Ritz approach. In addition. detailed knowledge of the deformation field
is not needed as required by the Rayleigh-Ritz approach.

3. The application of static condensation is crucial to the successful implementation
of this method. Every effort should be made to reduce the number of design vari-
ables to improve optimization efficiency.

C. COMMENTS ON OPTIMIZATION

A number of observations were made regarding the general use of the Automated

Design Synthesis System and the specific usage of the augmented Lagrange multiplier

method.

1. The global optimum was more likely to be determined when the objective function
was normalized.

2. For both the Rayleigh-Ritz approach and the finite element approach, the initial
choice of design variables had a significant affect on the possibility of obtaining the
global optimum. For the Rayleigh-Ritz method, initial selections of design vari-
ables can result in largely dissimilar values of strain energy and external work, the
two components of the objective function, It was determined that convergence was
more likely when optimization commenced with these two terms on the same order
of magnitude. With regard to the finite element approach, sensible choices of the
initial design variable vector was necessary for convergence to the global optimum.
This was accomplished by intuitive selection of design variables to model the likely
deformation.

3. Solution accuracy can be improved by scaling constraint equations. It has been
stated that in some circumstances, some constraints change more rapidly than
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others and can influence the solution excessively while others have little influence
[Ref. 6: p. 136].

4. With regard to the usage of the augmented Lagrange multiplier method, it was
frequently necessary to 'tune' the optimization algorithm to a specific problem.
This was done by varying the initial penalty term p and the initial Lagrange multi-
plier term )',. As stated bv Vanderplaats. commencing optirmzation with a small
value of p should theoretically suffice for most problems [Ref. 6: pp. 137-138].
ltowever, it was frequently necessary to select an initial value for p due to conver-
gence to unrealistic solutions. Similarly , an initial choice of the Lagrange multi-
plier term can effect the solution. Commencement with a small value is again
recommended. [Ref. 6: p. 1-41]. This need to 'tune' the problem is a significant
drawback to using this optimization method. The ideal way to overcome this lim-
itation is to first tune the optimization routine using a known solution. With this
accomplished, this approach can be used for meaningful data collection.

D. SANDWICH COMPOSITE MATERIAL STUDY

The behavior of sandwich composite materials to low velocity impact loading was

successfully investigated by the application of the finite element approach. A number

of observations can be made from examining the results.

1. The maximum shear stress is relatively insensitive to laver thicknesses. However.
as the thickness of the contact laver increases, a reduction of the interface shear
stress is observed.

2. Tensile transverse normal stresses exist at some cross sections away from the con-
tact zone. tlowever, this stress is always compressive at the interface. Compressive
transverse stresses increase in beams with smaller cores due to reduced deflection
and contact zone size.

3. As the thickness of the layer closest to the contact zone increases, a nonlinear dis-
tribution of bending stress within this layer intensifies. This phenomenon is local-
ized to the region of contact.

4. As the thickness of the layer opposite to the contact zone increases, bending crack
propagation toward the core is less likely due to increased compressive bending
stresses within the layer.

E. RECOMMENDATIONS FOR FURTHER STUDY

The methods developed in this study offer a basis from which additional research

can grow. A reasonable direction is the relaxation of some of the assumptions made in

Chapter 1I Part B. For example, relaxation of the rigid roller assumption and the

frictionless surface assumption would provide challenging research. Models with com-

plex geometry could be created. For example, a model of a pin loaded bolt connection

could be created w;th rigid or non-rigid pins. Implementation of these changes would

provide a versatile and highly applicable model for contact stress analysis.
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